Abstract
Luminescence thermometry uses temperature-dependent emission of light for remote sensing. Dy3+ is established as a perspective ion for high-temperature probes, but given that there is an infinite number of potential hosts it is impossible to find conventionally the one with the best performance. Judd-Ofelt thermometric model can predict sensitivities but it was not yet experimentally validated on Dy3+ ion. Pure phase CaYAlO4:Dy3+ powder was synthesized via the modified Pechini method. Photoluminescence spectra were taken from 300 to 600 K. Luminescence intensity ratio was estimated using 4I15/2 and 4F9/2 levels. Experimentally obtained thermometric parameters and sensitivities showed an excellent matching with those obtained from the Judd-Ofelt, indicating the potential application of the Judd-Ofelt model for fast assessment of Dy3+-doped luminescent sensor thermometric perspective. The maximum absolute and relative sensitivities are ∼0.001 K−1 at 600 K and ∼1.4% K−1 at 300 K, respectively. The optimum temperature range for the CaYAlO4:Dy3+ probe is from 370 to 616 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.