Abstract
Ceramides have unique biophysical properties. Their high melting temperature and their ability to form lateral domains have converted ceramides into the paradigm of rigid lipids. Here, using shear surface rheology of egg-ceramide Langmuir monolayers, a solid to fluid transition was evidenced as a vanishing shear rigidity at lower temperatures than the lipid melting temperature. Such a mechanical transition, which depends on the lipid lateral pressure, was found in a broad range temperature (40-50 °C). The solid to fluid transition was correlated to a LC to LC+LE phase transition, as confirmed by BAM experiments. Interestingly, together with the softening transition, a supercooling process compatible with a glassy behavior was found upon freezing. A new phase scenario is then depicted that broadens the mechanical behavior of natural ceramides. The phase diversity of ceramides might have important implications in their physiological roles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.