Abstract

AbstractLocal thermomechanical stress can cause failures in semiconductor packages during long‐time operation under harsh environmental conditions. This study helps to explain the packaging‐induced stress in blue GaN‐LEDs soldered onto copper substrates using AuSn alloy as lead‐free interconnect material. Based on the finite element method, a virtual prototype is developed to simulate the thermomechanical behavior and stress in the LED and in the complete LED/AuSn/Cu assembly considering plastic and viscoplastic strain. The investigations were performed by varying the temperature between −50°C and 180°C. To validate the model, the simulation results are compared to experimental data collected with Raman spectroscopy. Studies of the phonon mode of GaN semiconductor are elaborated to understand the induced thermomechanical stress. The model enables evaluation of the stress in the interfaces of the assembly, which otherwise cannot be accessed by measurements. It serves to predict how assemblies would perform, before committing resources to build a physical prototype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.