Abstract

It is of great significance to obtain an accurate stress assessment when replacing traditional metal components with ceramic matrix composites (CMCs) in turbine engines. The current study aims to investigate the stress characteristics of CMCs turbine vanes with multilayer-structured environmental barrier coatings (EBCs) using numerical simulation techniques. A three-dimensional finite element model of CMCs turbine vanes coated with EBCs was formulated. The distribution of thermal residual stresses generated during the manufacturing process of EBCs and the distribution of stresses under different loading conditions were calculated and compared. The results show that the hoop stress (σ11) and spanwise stress (σ22) in the turbine vanes are significantly higher than the through-thickness stress (σ33) under coupled loads. The maximum hoop stress (σ11) is approximately 346 MPa. The thermal residual stress induced during the EBCs manufacturing process reaches a maximum of approximately 360 MPa. The loading conditions significantly influence the stress distribution of EBCs, and the stress distribution of EBCs exhibits certain regularities at different heights under varying loading conditions. These results enable us to gain a deeper understanding of the failure mechanism of CMCs/EBCs turbine vanes and can improve the optimization capabilities for these components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call