Abstract
Three different Heat Affected Zones (HAZ) in hot rolled Nickel Free High Nitrogen Stainless Steels (NFHNSS) based on three different peak temperatures were physically simulated using Gleeble Simulator to investigate microstructural evolution and structure-property correlation. Optical microscopy revealed that the austenite grains are recrystallized in the simulated heat affected zone in the peak temperature range of 750 oC to 1050 oC. Extent of recrystallization of grains and nucleation of precipitates varied with peak temperatures. TEM characterization showed the presence of Cr2N precipitate having an average particle size in the range of 300 nm to 395 nm in the simulated HAZ were confirmed by Selected Area Electron Diffraction (SAED) analysis. Precipitation kinetics of Cr2N were simulated using Thermo-Calc were found to correlate well with experimental values. Mechanical properties of specimens taken from three different HAZ were evaluated for tensile strength and hardness. Variation in strength of the different specimens has been discussed using various strengthening models. Fractography analysis was also carried out to understand the effect of peak temperature on fracture behaviour. Transition in fracture patterns in NFHNSS from ductile to mixed mode was observed for different specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.