Abstract
Interior permanent magnet synchronous motors (IPMSMs) are extensively used as traction motors today because of their exceptional torque, power density, and wide, constant power operating range. Under real-world usage, an IPMSM rotor undergoes varying electromagnetic, thermal, and mechanical loads. Under such conditions, fatigue life-based design criteria should be used over stress-based design criteria to ensure the structural integrity of the rotor. Moreover, the driving dynamics can change the rotor temperature continuously, which affects the electromagnetic, mechanical, and fatigue properties of the rotor material. This paper proposes a robust thermomechanical rotor fatigue simulation workflow considering significant loads acting on an IPMSM rotor and the temperature variation throughout a drive cycle. It discusses an accelerated fatigue life estimation approach based on the peak valley extraction method to reduce the simulation time significantly for the stress and fatigue analysis. Then, it presents a method for a stress-life curve generation for variable loading. It also presents a sensitivity study with a median S-N curve, and a 90% reliability and 95% confidence (R90C95) S-N curve.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.