Abstract

A waste-based particle polymer composite (WPPCs) made of foam glass and polypropylene was developed as a low-cost construction material. Thermomechanical properties of the composite, including creep properties of WPPC and polypropylene binder, were examined. By adding a relatively small amount of polypropylene to foam glass (about 2:8 in volume parts), the maximum bearing capacity at room temperature of the composite increased from 1.9 (pure foam glass) to 15 MPa. A significant creep strain accumulated during compressive loading of WPPC (5 MPa) in the first 2000 s at elevated temperatures (40, 60 °C). In the study, Kafka’s mesomechanical model was used to simulate creep strain changes in time for various temperatures. The applicability of Kafka’s mesomechanical model for simulating creep properties of the studied composite material was demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.