Abstract
AbstractNanocomposites containing low wt% of oxidized multi‐walled carbon nanotubes (MWCNT‐OXI), nanosilica (NS), and its hybrid (MWCNT‐OXI/NS) in epoxy resin were produced and evaluated. The used nanoparticles were studied by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman spectroscopy while the nanocomposites were investigated in relation to its morphology, thermal, and mechanical properties. The results demonstrated significant improvements in the storage modulus (E′), glass transition temperature (Tg), and cross link density (CD), for the produced nanocomposites. Increases in thermal conductivity (TC) of up to 85% at 90°C were observed for the nanocomposites containing 1.0 wt% of the hybrid MWCNT‐OXI + NS nanofiller, when compared with neat polymer. It was also verified increases in the resistance to plastic deformation for the nanocomposites, maintained the polymer thermal stability with the addition of these nanoparticles. Finally, the use of MWCNT‐OXI and NS, combined or not, significantly improved the thermal and mechanical properties of polymer, showing multifunctional characteristics for the produced nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.