Abstract

The goal of the present study was to develop a low-density thermal insulation board using wood fibers and a bio-based adhesive as a binder, which was prepared from a crude glycerol and citric acid mixture. The physical and mechanical properties of insulation boards manufactured using two ratios of crude glycerol and citric acid (1:0.66 and 1:1 mol/mol) and two adhesive contents (14% and 20%) were evaluated. The results show that the insulation boards with a range of density between 332 to 338 kg m−3 present thermal conductivity values between 0.064 W/m-K and 0.066 W/m-K. The effect of adhesive content was very significant for certain mechanical properties (tensile strength perpendicular to surface and compressive strength). The tensile strength (internal bond) increased between 20% and 36% with the increased adhesive content. In contrast, the compressive strength decreased between 7% and 15%. The thermo-mechanical properties obtained of insulation boards such as thermal conductivity, traverse strength, tensile strength parallel and perpendicular to surface, and compressive strength are in accordance with the requirements of the American Society for Testing and Materials C208-12 standard for different uses. The results confirm the potential of crude glycerol and citric acid mixture to be used as an adhesive in the wood fiber insulation boards’ manufacturing for sustainability purposes.

Highlights

  • The building industry faces great challenges, such as the reduction of energy consumption from construction to the demolition of buildings [1]

  • The thermo-mechanical properties obtained of insulation boards such as thermal conductivity, traverse strength, tensile strength parallel and perpendicular to surface, and compressive strength are in accordance with the requirements of the American Society for Testing and Materials C208-12 standard for different uses

  • The results confirm the potential of crude glycerol and citric acid mixture to be used as an adhesive in the wood fiber insulation boards’ manufacturing for sustainability purposes

Read more

Summary

Introduction

The building industry faces great challenges, such as the reduction of energy consumption from construction to the demolition of buildings [1]. Building insulation materials are commonly manufactured using materials obtained from petrochemicals or from a natural source processed with high-energy consumption [1]. Materials such as fiberglass, mineral wool, or polyurethane foams have good thermo-mechanical properties (e.g., low thermal conductivity, good moisture protection, and fire resistance), but can be hazardous to human health and to the environment [4]. Mineral wool, or polyurethane foams have good thermo-mechanical properties (e.g., low thermal conductivity, good moisture protection, and fire resistance), but can be hazardous to human health and to the environment [4] These materials emit high levels of carbon during production and cannot be reused or recycled [3]. Those made with fibers can be classified into two subgroups: Inorganic (e.g., glass fiber, amorphous fiber (rock wool), ceramic fiber) and organic

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call