Abstract
The constitutive behaviour and microstructural evolution of the near-β alloy Ti–5Al–5Mo–5V–3Cr in the α + β condition has been characterised during isothermal subtransus forging at a range of temperatures and strain rates. The results indicate that Ti–5Al–5Mo–5V–3Cr has a shallower approach curve, and therefore, offers a more controllable microstructure than the near-β alloy Ti–10V–2Fe–3Al. Flow softening is small in magnitude in both alloys in the α + β condition. The steady state flow stresses obey a Norton–Hoff constitutive law with an activation energy of Q = 183 kJ mol −1, which is similar to the activation energy for self-diffusion in the β phase, suggesting deformation is dominated by dynamic recovery in the β matrix. Good evidence is found for the existence of ω phase after both air cooling and water quenching from above the β transus. In addition, dissolution of the α phase is found to be slow at near-transus temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.