Abstract
A postbuckling analysis is presented for a moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading, and resting on a softening nonlinear elastic foundation. The cases of (1) thermal postbuckling of initially compressed plates and (2) compressive post-buckling of initially heated plates are considered. The initial geometrical imperfections of the plates are taken into account. Formulations are based on Reissner-Mindlin plate theory, considering first-order shear deformation effects, and including plate-foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples include the performance of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations. Typical results are presented in dimensionless graphical form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.