Abstract

Postbuckling analysis is presented for shear deformable cross-ply laminated composite rectangular plates subjected to the combination of in-plane edge compressive mechanical loading and thermal loads due to a linearly varying temperature across the thickness. The formulation is based on the first-order shear deformation theory and von-Karman-type nonlinearity. The analysis uses a quadratic extrapolation technique for linearization and Chebyshev polynomials for spatial discretization. An incremental iterative approach is employed to estimate the critical load. The boundary conditions consisting of clamped, simply supported, free edge, and their combinations are considered. The effects of the thinness ratio, aspect ratio, lamination scheme, the number of layers, and the modulus ratio on the critical load/limit load and postbuckling behavior are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.