Abstract

A numerical framework based on the generalized finite element method (GFEM) is developed to capture the coupled effects of thermomechanical deformations and thermal gradients on the regression rate of a heterogeneous solid propellant. The thermomechanical formulation is based on a multiplicative split of the deformation gradient and regression of the heterogeneous solid propellant is simulated using the level set method. A spatial mesh convergence study is performed on a non-regressing solid heterogeneous propellant system to examine the consistency of the coupled thermomechanical GFEM solver. The overall accuracy (spatial and temporal) of the coupled thermomechanical solver for regressing solid propellants is obtained from a periodic sandwich propellant configuration, where the effects of thermomechanical deformations on its regression rate is investigated. Finally, the effects of thermomechanical deformations in a regressing two-dimensional heterogeneous propellant pack are studied and time-average regression rates are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.