Abstract

Abstract A 3D finite element based Representative Volume Element (RVE) model has been developed to predict the thermo-mechanical properties of 3D orthogonal interlock woven fabric composites (OIWFC) and angle interlock woven fabric composite (AIWFC) using a two-step homogenization approach. The first step homogenization, micro-homogenization, deals with resin infiltration effect of yarn as a unidirectional continuous fiber with an assumption of 80 percent of fiber volume fraction based on initial fiber and matrix properties. The second step, meso-homogenization, predicts effective thermo-mechanical properties of 3D woven fabric composites based on effective yarn and matrix properties. The RVE analysis has been performed using 3D FEA method with periodic boundary conditions (PBCs). Further, a void study has been performed considering the influences of void on thermo-mechanical properties of the 3D woven fabric composite. It is noted that the influence of void contents plays a significant role in predicting the thermo-mechanical properties of the 3D WFC. The thermo-mechanical properties gradually decrease with an increase of void contents. Studies have been carried out considering the same fiber volume fractions in both 3D WFC models. An AIWFC model predicts higher values of thermo-mechanical constants than OIWFC model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call