Abstract

To investigate thermomechanical contacts between an elastic–plastic sphere and a rigid flat, simulations with slip rates ranging from 0.1m/s to 10m/s were performed. As interfaces with strong interfacial bonding but weak substrate were specifically targeted, slip initiation was treated as shear failure of the softer material in numerical simulations. The simulations show that both sliding friction coefficient and friction stress are significantly dependent on slip rate while the maximum static friction coefficient is independent of that. Moreover, the energy release during the transition from full stick to full slip is comparable to the shear fracture energy of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.