Abstract

A thick film of aniline-formaldehyde copolymer and PMMA is synthesized via dispersion of aniline-formaldehyde copolymer powder as filler particles in PMMA with two different concentrations. Variation of the complex elastic modulus and mechanical loss factor (tanδ) with temperature is studied. It is observed that the complex elastic modulus decreases with temperature owing to thermal expansion of films. On the other hand, tanδ increases up to a characteristic temperature beyond which it shows a decreasing trend toward melting. Transition temperature T g of sample S1 (pure PMMA) is found to be 80°C. In sample S2 (1 wt % aniline formaldehyde copolymer), the peak of tanδ at a lower temperature (66°C) corresponds to glass transition temperature T g of the PMMA matrix, while the peak of tanδ at a higher temperature (107.8°C) corresponds to T g of a polymer chain restricted by filler particles of aniline-formaldehyde copolymer. A further increase (10 wt % aniline-formaldehyde copolymer) in the concentration of filler particles of aniline-formaldehyde copolymer results in a more compact structure and a shift of T g to a higher temperature, 122.2°C. This shift in the glass transition temperature of thick films of aniline-formaldehyde copolymer and PMMA is dependent upon the concentration of filler particles in the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.