Abstract

Thermally induced elastic fracture around a localized energy source on a pressurized cylindrical vessel is studied in this work. Analytical solutions are obtained via the method of dual integral transform, with emphasis on the identification of the dominating parameters in thermal cracking. Directions for crack extension from the heat source are examined by the stress and strain-energy-based criteria, including the effects of internal pressure and axial stress. Special features include the intrinsic transition between the thermally driven and the mechanically driven fracture patterns. The physical parameters governing such transition are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.