Abstract

Due to high temperatures and mechanical loads, cracks are initiated in aero engine turbine blades which limit the cyclic life of these components. The materials used for components which underlie high thermal and mechanical load are single crystalline (SX) nickel based super alloys that in most cases contain a certain amount of rhenium. Dramatically increasing Re prices lead to the development of Re-free alloys.In this work, low-cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) tests were carried out on the Re-free single crystal M-247LC SX. The test results are shown and a model based on crack propagation was used to predict LCF and TMF life. It was shown, that the modeling results fit properly for out-of-phase TMF and LCF life while for in-phase TMF differences between calculated life and experiments occur due to a different mechanism of fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.