Abstract

TiAl is supposed to substitute Ni or Ti alloys in energy conversion systems, such as aero engines. These components are subjected to thermomechanical fatigue (TMF), whereas this mechanical behaviour may substantially differ from isothermal low cycle fatigue (LCF). Therefore, it is necessary to assess TMF properties, in order to establish a reliable and precise lifetime prediction model. In this study the γ-base TiAl intermetallic alloy TNB-V2 was subjected to fully-reversed TMF tests under total strain control at strain amplitude of 0.7%, accompanied by LCF tests in air and vacuum. Temperature ranged from 550°C to 850°C. In TMF tests a continuous built-up of compressive (in-phase) or tensile (out-of-phase) mean stresses is observed. The lifetime ratio between IP and OP is 30–200, depending on temperature range. Substantially longer lifetimes of OP-TMF tests in vacuum are observed. Fracture always occurs in a transcrystalline mode. A lifetime description at 550°C based on the Basquin-Coffin-Manson equation reveals that the fatigue behaviour is governed by the amount of elastic strain even at low cycles, and the transition lifetime was found to be at 5 cycles. A damage parameter based on the equation of Smith, Watson and Topper is able to describe LCF and in-phase TMF lifetimes reasonably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.