Abstract
In this study, the integrity of a manhole structure made of a 78 in. high density polyethylene (HDPE) stub-end, steel ring, and blind flange, sealed with a compressed nonasbestos fiber (CNAF) gasket is investigated by means of a parametric finite element analysis (FEA). A coupled thermomechanical nonlinear FEA model is built, comprising of a heat transfer and a structural model, which allows modeling the complex thermal and mechanical loads and their interactions present during the operation of the manhole. The temperature-dependent elastic–plastic HDPE material constitutive behavior and the temperature-dependent nonlinear response of the CNAF gasket are accounted for in the model. Factors influencing the performance and integrity of the manhole such as stud-bolt pretorque level (Tb), internal pressure (Pi), and outer temperature (To) are considered. Based on the results, the integrity and performance of the structure are assessed in view of a leakage through the gasket criterion and a yielding of the HDPE stub-end criterion. The FEA results reveal that both Tb, Pi, and To significantly influence the performance (i.e., leakage) of the gasket and the integrity (i.e., yielding) of the HDPE stub-end. At 40 °C, it is possible to find a safe operational window for a range of Tb and Pi values, where no leakage through the gasket or yielding of the stub-end occurs. However, as the temperature is increased this safe operational window decreases considerably, and at 80 °C safe operation cannot be guaranteed where leakage, yielding, or both simultaneously, will lead to loss in performance and integrity of the manhole structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Pressure Vessel Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.