Abstract

The prediction of the ingot deformation during direct chill (DC) and electromagnetic (EM) casting of aluminum alloy slabs would allow the optimization of the mold/inductor shape capable of producing flat ingots. The transient thermomechanical model presented here predicts the deformation and the temperature field evolution during DC/EM casting. Deformation in the solid is assumed to obey a viscoplastic law. The model is validated on the basis of the measurements presented in part I. It enables to predict the influence of casting parameters on butt curl and swell, rolling faces pull-in and residual stress state for DC and EM-cast ingots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call