Abstract

Data from comprehensive thermomechanical tests of shape memory polymers are reported, with specimens tested up to 75% strain and between 30-120°C temperatures. The data is analyzed and key observations are drawn. The stress/strain behavior during loading at temperatures above glass transition for the Veriflex shape memory polymer tested was linear and did not show much variation with the actual temperature. When the polymer is cooled with end constraints, thermally induced tensile stresses developed, but only after the temperature reduced below glass transition and the material stiffened. When the constraints were then released, 97-98% of the original strain was locked in. Reheating the shape memory polymer beyond the glass transition temperature resulted in shape recovery (shape memory effect). When the polymer was reheated while constraining the strain, the full recovery stress developed was about the stress the polymer was initially loaded to during deformation at high temperature. Examining the Young's modulus at elevated temperature and low temperature showed that Veriflex softened by around 40-60 times when heated through glass transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.