Abstract

The first wall and plasma interactive components of a fusion power reactor are subjected to heavy irradiation of high energy neutrons and high heat flux during normal operation. An extremely high heat flux is deposited in the components during a major plasma disruption categorized as abnormal operation. As a consequence of the event the components melt and solidify resulting in deterioration of the material, high residual stress, metallurgical change and initiation of small cracks. Quantitative evaluation of the consequence of plasma disruption is required to maintain the structural integrity of the components and predict their lifetimes. In the present study the whole process of melting, evaporation and resolidification is analysed using a newly developed computer code based on FEM. In addition, the elastoplastic thermal stress in the heated region during the event is described including residual stress. An experiment was carried out to verify the validity of the code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.