Abstract

New diamines for high-performance poly(ester imide)s (PEsIs) containing dimethyl groups at the ortho-position of amino groups and ester derivatives have been developed to improve optical transparency and glass transition temperature (Tg) while maintaining a low coefficient of thermal expansion (CTE). Four kinds of PEsIs derived from bis(4-amino-3,5-dimethylphenyl) terephthalate (BADMT) and aromatic dianhydrides such as 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 4,4’-oxydiphthalic anhydride (ODPA), and 4,4'-(hexafluoroisopropylidene)diphthalic (6FDA) were synthesized via a two-step polycondensation. All PEsIs exhibited outstanding properties, such as light color, a good transmittance of >90% at 550 nm, high Tg above 289 °C and 5% weight loss temperature (483–511 °C), and low CTE (11–68 ppm/°C). The effect of the substituent on molecular packing and properties, including optical and thermomechanical properties for the resulting PEsIs were examined in detail. The temperature-dependent CTE of the PEsIs was determined using molecular dynamics (MD) simulation. The molecular orbital (MO) calculation models support the discussions on the electronic substituent effect of the PEsI main chains. Our molecular architecture and systematic property studies with MD and MO promote a better understanding of the polyimides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.