Abstract

This article presents a comprehensive investigation into the thermomechanical analysis of glass powder as an additive in concrete. The efficient Eshelby's model is utilized to determine the relevant composite properties, considering the spherical shape of the glass powder. A higher-order shear deformation plate theory is employed to theoretically simulate the reinforced concrete panel, ensuring accuracy and simplicity. Equilibrium equations are derived using the virtual work concept, and energy equations are derived using Hamilton's principle. Navier's analytical techniques are applied to obtain closed-form solutions for simply supported plates. A comprehensive parametric study is conducted, analyzing the impact of factors such as glass powder volume, geometric parameters, and thermal loading on the thermomechanical behavior of the panel. The findings highlight the challenges associated with using glass powder in concrete for thermomechanical applications and suggest the need for alternative approaches to optimize its effectiveness in such scenarios, also the study provides first-time numerical results that serve as guidelines for further research on reinforced concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call