Abstract

Variation of thermomagnetic properties of nanoparticles are the matter of great debate. To develop a suitable model for the study of magnetic properties, the size and shape dependent magnetic properties such as Curie temperature (TC), Neel temperature (TN) and magnetization (MS) of magnetic nanoparticles (Fe, Ni, Co, Fe3O4, NiO, CoO, CuO, Ho and CoFe2O4) have been studied. In the present work, bond energy model has been used with the concept of dangling bond and its effect on the surface of nanoparticles. It is observed that the introduction of packing fraction of materials to this model supports the experimental facts. The obtained results have been explained by considering the concept of dangling bond at the surface of nanoparticle and packing fraction of crystal. It is observed that these magnetic properties decrease with reducing size of nanoparticles and the available experimental data are in good agreement with present theoretical model. The validity of present model encourages us to predict the behaviour of thermomagnetic properties of other nanoparticles.

Highlights

  • The nanomaterials found the great attention due to their specific and unexpected behavior at their low dimensions

  • In the case of tungsten nanoparticle, the theoretical curve of cohesive energy for tetrahedral structure is in good agreement with the available experimental data and validates the present model

  • The behavior of Neel temperature for the cobalt oxide (CoO) and cupric oxide (CuO) nanoparticles are explained on the basis of same concept as introduced in the present model and the graphical variation of the Neel temperature with size are shown in Fig. 3(c) and Fig. 3(d) respectively

Read more

Summary

RESEARCH ARTICLE

Ratan Lal Jaiswal, Brijesh Kumar Pandey2,*, Variation of thermomagnetic properties of nanoparticles are the matter of great debate. To develop a suitable model for the study of magnetic properties, the size and shape dependent magnetic properties such as Curie temperature (TC), Neel temperature (TN) and magnetization (MS) of magnetic nanoparticles (Fe, Ni, Co, Fe3O4, NiO, CoO, CuO, Ho and CoFe2O4) have been studied. Bond energy model has been used with the concept of dangling bond and its effect on the surface of nanoparticles. It is observed that the introduction of packing fraction of materials to this model supports the experimental facts. The obtained results have been explained by considering the concept of dangling bond at the surface of nanoparticle and packing fraction of crystal. It is observed that these magnetic properties decrease with reducing size of nanoparticles and the available experimental data are in good agreement with present theoretical model. The validity of present model encourages us to predict the behaviour of thermomagnetic properties of other nanoparticles

Introduction
Mathematical analysis
Results and discussion
Spherical Regular Octahedral Regular Hexahedral Regular Tetrahedral
Conclusion
Authors biography
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.