Abstract

The characteristics of thermomagnetic convective flow in a rectangular enclosure heated from below and filled with oil-based nanofluid (EFH-1, Ferrotec.), so called ferrofluid, were numerically investigated. The enclosure contained obstacles with rectangular or triangular configurations mounted on the top and bottom walls. To generate homogeneous magnetic fields, a permanent magnet with a uniform magnetic field strength of 600 kA/m was located in the lower part of the rectangular enclosure, and specified the horizontal or vertical direction. Coupling calculations between thermal-flow field and magnetic field in the analysis model were performed using the commercial code, COMSOL Multiphysics. Results showed that the ferrofluid flow fields were affected by the applied external magnetic field directions and that the eddy flow phenomena in the rectangular enclosure were generated in the vicinity of the section of high magnetic flux density fields such as the edge of the permanent magnet. The effect of parameters like temperature distributions and local Nusselt number (Nu) profiles on the thermomagnetic convective flow was graphically depicted with various flow conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.