Abstract

The presence of sulfur in the thermolysis of bibenzyl considerably reduces the severity of the conditions required to cleave the aliphatic carbon-carbon bond. Bibenzyl rapidly reacts with sulfur at 425/sup 0/C to give nine fully characterized products: benzene, toluene, ethylbenzene, diphenylmethane, 1,1-diphenylethane, trans-stilbene, phenanthrene, 2-phenylbenzothiophene, and 2,3,4,5-tetraphenylthiophene. Toluene is the principal product, and its yields are dependent on reaction time, temperature, and sulfur loading. With the addition of H/sub 2/S to the sulfur-bibenzyl reaction mixture, the required elemental sulfur loading for maximum toluene yields is greatly decreased, and the mass recovery decreases with amounts of sulfur loaded. The two minor products, 2-phenylbenzothiophene and 2,3,4,5-tetraphenylthiophene, give evidence of sulfur incorporation under these sulfur concentration conditions. The addition of hydrogen to the reaction mixtures improves mass recovery and decreases conversion. 27 references, 4 figures, 4 tables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.