Abstract

The bacterial neutral proteases have been proposed to undergo hinge-bending during their catalytic cycle. However, in thermolysin, the prototypical member of the family, no significant conformational change has been observed. The structure of thermolysin has now been determined in a new crystal form that for the first time shows the enzyme in the absence of a ligand bound in the active site. This is shown to be an 'open' form of the enzyme. The relative orientation of the two domains that define the active-site cleft differ by a 5 degrees rotation relative to their positions in the previously studied ligand-bound 'closed' form. Based on structural comparisons, kinetic studies on mutants and molecular-dynamics simulations, Gly78 and Gly135-Gly136 have previously been suggested as two possible hinge regions. Comparison of the 'open' and 'closed' structures suggests that neither of the proposed hinge regions completely accounts for the observed displacement. The concerted movement of a group of side chains suggested to be associated with the hinge-bending motion is, however, confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.