Abstract

Variations in thermoluminescence spectra are reported for four types of geological quartz examined with a new spectrometer featuring dual imaging photon detectors that separately and simultaneously detect (1) uv-blue (200–450 nm) and (2) blue to near infrared (400–800 nm) emission. Samples show striking differences which appear to be characteristic of their geological origin. Volcanic quartz phenocrysts from acid volcanics show red thermoluminescence (TL) emission bands centered at 620–630 nm that are 100 times more intense than similar bands in other quartz, while a violet emission at 420–435 nm was observed exclusively in igneous quartz (volcanic and granitic). A broad emission band centered at 560–580 nm was observed only in quartz formed hydrothermally. Massive quartz from Li-rich pegmatite bodies shows narrow, intense 470 nm emission bands at 230° C apparently related to Al and to Ge defects detected with electron paramagnetic resonance (EPR), and emission bands at 330 and 280 nm, possibly related to recombination at oxygen vacancies. The common 380 nm emission band of quartz was observed in both volcanic and granitic quartz, but was not detected in either the pegmatitic or the hydrothermal vein quartz. Observed spectral variation is identified as a potential source of error in luminescence dating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.