Abstract

High-dose thermoluminescence dosimetry properties of novel zinc oxide nanophosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ~500 nm and ~2 μm were obtained by annealing the synthesized ZnO at 900°C during 2 h in air. X-ray diffraction patterns indicate the presence of the ZnO hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of ZnO obtained after being exposed to beta radiation consists of two maxima: one located at ~149°C and another at ~308°C, the latter being the dosimetric component of the curve. The integrated TL fading displays an asymptotic behavior for times longer than 16 h between irradiation and the corresponding TL readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized ZnO as a promising material for high-dose radiation dosimetry applications.

Highlights

  • A wide variety of luminescent materials used as thermoluminescent dosimeters (TLD) can be applied in several areas such as environmental and clinical dosimetry, as well as applications related with high radiation doses such as nuclear reactors facilities, food sterilization plants, materials testing, and space dosimetry [1, 2]

  • Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized ZnO at 900∘C during 2 h in air

  • Thereby, motivated by the antecedents mentioned above, the purpose of this work is to present for the very first time high-dose TL dosimetry properties of novel zinc oxide obtained by a glycine-nitrate solution combustion synthesis

Read more

Summary

Introduction

A wide variety of luminescent materials used as thermoluminescent dosimeters (TLD) can be applied in several areas such as environmental and clinical dosimetry (low dose dosimetry), as well as applications related with high radiation doses such as nuclear reactors facilities, food sterilization plants, materials testing, and space dosimetry [1, 2]. In particular conventional TL dosimeters, show a remarkable superlinearity at high-dose levels: the number of available materials for high-dose dosimetry is limited [1, 2]. The search for new materials for high-dose TL dosimetry applications with high saturation limits represents a considerable challenge in the field of materials science. There are a considerable number of reports regarding the TL response of zinc oxide under exposure with different types of radiation sources [3,4,5,6]. Further investigations related to TL dosimetry features of pure and doped ZnO nanophosphors obtained by different soft chemistry-based methods had been carried out, proposing this oxide as a promising material for high-dose radiation dosimetry applications [7,8,9,10,11,12,13,14,15]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call