Abstract

Ensembles of nanoclusters created by injection of nitrogen atoms and molecules as well as rare gas (RG) atoms (Ne and Ar) into superfluid 4He have been studied via optical and electron spin resonance (ESR) spectroscopies. We studied the dynamics of thermoluminescence spectra emitted during the warming of porous structures formed by nitrogen–neon and nitrogen–argon nanoclusters inside superfluid helium. We show experimental evidence that quantum vortices initiate chemical reactions in porous ensembles of nanoclusters. Using this experimental approach, it is possible to study chemical reactions of heavy atoms and molecules at very low temperatures where normally their diffusion and quantum tunneling in solid matrices are completely suppressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.