Abstract

Lithium tetraborate (LTB) was doped with copper (0.1%) to enhance the LTB thermoluminescent (TL) properties. A graphene reducing atmosphere was used to increase the vacancies of oxygen in the crystalline structure. LTB:Cu [Formula: see text] PTFE (polytetrafluoroethylene) pellets were prepared by mixing the Li2B4O7:Cu with PTFE in a 4:1 ratio. The obtained materials were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Crystals of Li2B4O7 with the average size of 134[Formula: see text]nm were obtained. The presence of copper was confirmed by SEM. The TL response of LTB:Cu PTFE pellets was studied with [Formula: see text] radiation by using a [Formula: see text]Co source. TTL response shows a linear behavior depending on the radiation dose. The effect of annealing time on TL glow curve was analyzed from 2[Formula: see text]h to 10[Formula: see text]h by irradiating with X-rays. The effect of mass on the TL response was studied varying the mass of the sample from 10[Formula: see text]mg to 50[Formula: see text]mg. From various heating rate studies, it was observed that the TL intensity increased when heating rate was gradually increased. The kinetic parameters were calculated by using computer deconvolution methods. The dosimetric property results showed that this material could have good potential application in a radiation dosimeter for radiation therapy treatment in the medical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.