Abstract

LiMoO4: x Eu ceramic phosphors with x = 0.5, 1, 2, 3, 5, and 7 mol% were synthesized using a gel combustion method. X-ray diffraction (XRD) measurements confirmed a rhombohedral structure (space group R3) of synthesized compounds. Following irradiation with 50 Gy beta dose, the sample doped with 5 mol% Eu exhibited the highest integrated thermoluminescence (TL) intensity. In order to evaluate dose-response, samples were irradiated with beta radiation for 10–1000 Gy. TL intensity with 1000 Gy dose without saturation yielded the highest integrated value. Different methods were employed to determine the number of peaks, the trap structure, and the kinetic parameters of the thermoluminescence glow curve of Eu doped Li2MoO4: the Hoogenstraaten method, the Booth-Bohun-Parfianovitch method, the initial rise method (IR), combined with the TM-Tstop experiment, various heating rates (VHR), and glow curve fitting with two different software packages. Based on the glow curve deconvolution obtained using both software packages, the component TL glow peaks present in the complex glow curve are composed of well-isolated nine overlapping glow peaks. Two software packages have shown quite similar activation energies and frequency factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.