Abstract
This article presents a detailed analysis of beta ray exposed thermoluminescence response of a series of Eu3+ doped (0.5–10 mol%) Mg2SiO4 nanocrystalline samples successfully synthesized through solid state reaction method. Optimizing the doping concentration of Eu3+ ion in Mg2SiO4 phosphor was found as 3 mol%. Two main peaks were seen at 246 °C and 374 °C and also low temperature peak at 78 °C. The intensities of these peaks were increased linearly with increasing beta absorbed dose. Tm−Tstop method was used to reveal trap levels. Variable heating rate and computerized glow curve deconvolution methods were also used to evaluate the number of peaks and kinetic parameters, namely activation energy and frequency factor. The results of a series of experiments carried out to investigate some fading characteristics of Mg2SiO4:Eu3+ were also presented. The findings suggest that thermoluminescence properties of Mg2SiO4:Eu3+ makes this material suitable and promising dosimetric phosphor material for medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.