Abstract

-Al2O3:C crystal is a high sensitive luminescence dosemeter, and it possesses a high thermoluminescence (TL) sensitivity, approximately 40-60 times greater than LiF: Mg, Ti. However, the crystal growth requires sophisticated laboratories, high temperatures and highly reducing atmosphere. The fluorescence and TL characteristics of -Al2O3:C ceramic are similar to those of -Al2O3:C crystal, however, it shows three TL peaks. In this work, porous alumina membranes are prepared by two-step anodization in 0.5 M/L oxalic acid at 5 ℃. We investigate the influence of annealing temperature ( 600 ℃) on thermoluminescence (TL) and optically stimulated luminescence (OSL) characteristics of Al2O3:C films and discuss the influence mechanism. The scanning electron microscopy measurement reveals that Al2O3:C film possesses highly ordered nanopores with homogeneous dimensions arranged in a closed-packed hexagonal pattern. The energy dispersive X ray spectroscopy and the Fourier transform infrared spectroscopy results indicate that oxalic acid impurity is incorporated into the porous alumina membrane in the synthesis process, after the annealing treatment, the oxalic acid impurity decomposes and C2+ replaces Al3+, which leads to the formation of F+and the C content of samples increasing with elevated annealing temperature. The X-ray diffraction measurement reveals that Al2O3:C films annealed at different temperatures are amorphous. TL measurements show that the dominated peak of Al2O3:C film is centered at around 310 ℃, owing to the number of F+increasing with the annealed temperature increasing, under the same irradiation dose, the sample annealed at 600 ℃ has the greatest TL intensity. With the increase of the irradiation dose, the TL intensity increases and the dominated peak gradually shifts to high temperature, which is consistent with the general order kinetic model. The sample annealed at 600 ℃ has the greatest TL sensitivity and its TL response shows excellent linear characteristic in as dose range of 1-10 Gy, but shows super-linear behavior in a dose range of 10-120 Gy. The OSL measurements show that with the increases of the annealed temperature and the irradiation dose, the OSL initial intensity increases and each of all samples shows a typical exponential decay. Compared with the case of -Al2O3:C crystal, the fast attenuation rate of film is dramatically accelerated. In a dose range of 1-200 Gy, the OSL responses of all samples each show an excellent linear characteristic, the sample annealed at 600 ℃ has the greatest OSL sensitivity. Compared with TL response, OSL response of Al2O3:C film shows a wider range of linear dose response. In this paper we have made a beneficial exploration for Al2O3:C films as OSL dosimerer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call