Abstract

The present review article contains various applications of Thermoluminescence. The phenomena of thermoluminescence (TL) or thermally stimulated luminescence (TSL) and optically stimulated luminescence (OSL) are widely used for measurement of radiation doses from ionizing radiations, viz. x-rays, γ rays and β particles. The applications of TL are initiated in the field of Geology followed by Archaeology, personal dosimetry, material characterization and many more to name. The TL technique has been found to be useful in dating specimens of geologically recent origin where all other conventional methods fail. It has been found to be highly successful in dating ancient pottery samples. The TL/OSL dating is done from a quartz grain, which is collected from pottery or brick, by reading the TL-output. The main basis in the Thermoluminescence Dosimetry (TLD) is that TL output is directly proportional to the radiation dose received by the phosphor and hence provides the means of estimating the dose from unknown irradiations. The TL dosimeters are being used in personnel, environmental and medical dosimetry. During the last two decades, OSL based dosimeters have also been used for various applications. Natural and induced TL signals can be used to explore mineral, oil and natural gas. The present review presents TL theory, TL of minerals, salt, cement, salt crystals from pickles, and low temperature thermoluminescence (LLTL) of few agricultural products. Contents of Paper

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.