Abstract
Lithium silicate phosphor, synthesized by the solid-state reaction method, displays three thermoluminescence (TL) peaks at 155 °C, 240 °C and 430 °C. Activation energy, frequency factor and kinetic order associated with the TL peaks have been determined using E-Tstop and glow curve deconvolution (GCD) methods. Electron Paramagnetic Resonance (EPR) studies have been carried out to identify the defect centers induced in the phosphor by gamma irradiation and also to find the centers responsible for the TL process in the system. The observed EPR spectrum arises from a superposition of three defect centers. One of the centers (center I) with a g-value 2.0097 is identified as the O− ion. Center II with an isotropic g-value 2.0002 is assigned to a F+-type center (singly ionized oxygen vacancy). The F+ center is likely to be associated with the TL peak at 156 °C. Center III characterized by a rhombic g-tensor with g1 = 1.9831, g2 = 1.9676, and g3 = 1.9208 is identified as a Ti3+ center. The Ti3+ center relates to the low temperature TL peak at 155 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.