Abstract

Eukaryotic and prokaryotic cells have been shown to respond to physical and chemical stress by the induction of proteins called heat shock proteins. Heat shock protein 70 (Hsp70), is the most ubiquitous of these proteins. Although heat shock proteins are generally thought to protect cells from physiologically stressful stimuli, it cannot be assumed that this is so, because several cases exist in which thermotolerance is acquired without the production of heat shock proteins, and in several other cases the hyperproduction of these heat shock proteins does not produce thermotolerance. In this study we show that unfertilized mouse oocytes are sensitive to elevated temperatures, and that the synthesis of Hsp70 cannot be induced in these oocytes. Furthermore, our data demonstrate that the expression of Hsp70 in mouse oocytes is sufficient for the acquisition of thermotolerance. Mouse oocytes were injected with mRNA for Hsp70, and the viability of these oocytes was determined after heating. The number of viable oocytes was significantly higher in the group injected with Hsp70 mRNA and then heated compared with oocytes injected with Hsp70 antisense mRNA and sham-injected controls treated in an identical manner. No significant differences in the number of viable oocytes were found between the group that had been injected with Hsp70 mRNA, heated, and then allowed to recover for 3 hr and the group maintained at 37 degrees C throughout.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.