Abstract
The external factors that influence on the thermokinetic EMF value in the Ti – 50 at.% Ni samples were determined. A method for setting thermokinetic EMF in certain sections of the TiNi wire was developed. The thermokinetic EMF value was measured directly using a digital millivoltmeter MNIPI V7-72. The sections of the Ti – 50 at.% Ni wire samples were subjected to tensile tests on a tensile machine IP 5158-5. On the basis of calorimetric studies, the kinetics of martensitic transformations was investigated. It was found that the direct phase transition affects the thermokinetic EMF value of the Ti – 50 at.% Ni during thermal cycling. Thermal cycling in the temperature range of the complete martensitic transformation causes the thermokinetic EMF value reduction by 0.16 mV by the 15th temperature cycle. The degradation of the thermokinetic EMF value by 0.04 mV took place during thermal cycling in the temperature range of the incomplete martensitic transformation by the 70th thermal cycle. The thermokinetic EMF value was restored to 0.22 mV with increasing temperature to 240 °С, as in the case of annealing at temperatures of 400÷800 °С. The thermokinetic EMF value is associated with a change in physical and mechanical properties of the alloy during thermal cycling. It is characterized by a change in stages of the phase transition and a shift of the characteristic temperatures. On the basis of the obtained experimental data, a method was proposed for a purposeful setting of extended TiNi wire sections with the thermokinetic EMF value from 0 to 0.6 mV, using different methods of influence on its value (thermal cycling, deformation, temperature change in heating zone). The proposed technical solution can be used as a method for information recording.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.