Abstract
Thermokinetic behaviour of SnCl2 was investigated using differential scanning calorimetry and thermogravimetry techniques under non-isothermal conditions in air, complemented by electron microscopy and Raman spectroscopy. According to the results obtained, the oxidation of SnCl2 at the heating rates of 5 and 100 °C min−1 leads to the in situ formation of highly crystalline SnO2 nanostructures in the form of nanoparticles and nanorods, respectively. The oxidation of SnCl2 was found to be a liquid–solid (LS) phase transition at the heating rates equal or lower than 10 °C min−1 and a gas–solid phase transition at the heating rates equal or greater than 20 °C min−1. The activation energy of melting, vaporisation and LS oxidation of SnCl2 was determined to be 198, 93 and 91 kJ mol−1, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.