Abstract

We present a multiscale model that simulates coupled thermal and hydrological behavior driven by radioactive decay heat from a potential nuclear waste repository at Yucca Mountain, Nevada. We use this model to evaluate repository performance for different designs with respect to major thermal design goals (e.g., keeping waste packages dry). A locally boiling or globally boiling design uses rock dry out to create dry (low relative humidity (RH)) conditions around waste packages for a long period of time. A subboiling design eliminates boiling in the host rock (possibly reducing uncertainty) but is less effective at maintaining dry conditions. The addition of backfill increases the duration of RH reduction significantly without added boiling in the host rock but at the cost of higher waste package temperatures. The interaction between engineering design variables and natural system factors that affect thermohydrologic behavior is highly nonlinear. As a consequence, designs that differ by seemingly small details can result in markedly different thermohydrologic behavior and consequently repository performance, whereas with regards to other details, large differences may have little or no effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.