Abstract

We consider a plane problem of barotropic seiches generated by a front of atmospheric pressure moving over a bounded basin. A system of nonlinear equations of long waves is solved by the finite-difference method with regard for the bottom friction and Earth's rotation. The numerical analyses are performed for two basins with distributions of depths typical of the Black Sea. It is shown that the passage of a baric front over the basin leads to the generation of lower seiches. The oscillations of level and the corresponding currents are especially intense in the shallow-water zones of the basins. The seiches become more intense as the velocity of transfer of the atmospheric front increases and the width of the front decreases. Earth's rotation leads to the generation of longshore currents and promotes the process of weakening of residual oscillations of the fluid following the passage of the front. The influence of nonlinearity on seiches is small for the analyzed basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.