Abstract
Convection in nematic liquid crystals has been the object of intense research over the past few years. It was predicted and experimentally verified that the anisotropic tensor properties of the fluid, taken Newtonian in flow characteristics generates genuine and novel qualitative and quantitative features when flow is induced by thermal constraints or buoyancy forces. For instance, in a Rayleigh-Benard geometry steady convection exists when the fluid layer is heated from below or from above. Threshold values are drastically lower than those typical of isotropic fluids under similar conditions. Oscillatory modes have also been studied. Furthermore, the interplay of thermal constraints and magnetic or electric fields leads to a unusual richness in the phenomena so far observed. We shall summarize here some of the conditions for thermal convection in Rayleigh-Benard and cylindrical geometries with no pretension to completeness. We merely want to introduce the subject developed in the lectures by Prof. T. Riste. For an introduction to the physics and the hydrodynamics of liquid crystals the reader may refer to the monographs by de Gennes (1974) or Chandrasekhar (1977).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.