Abstract

A theoretical study of a submerged oil journal bearing is made considering surface roughness and thermal effects. The total load-supporting ability under such condition is due to the thermohydrodynamic as well as the asperity contact pressure. The effect of surface roughness and viscosity-temperature dependency on hydrodynamic pressure has been found by solving the average Reynolds equation, energy equation and heat conduction equations simultaneously. The cavitation model of Jacobsson-Floberg has been modified to take the surface roughness effects into consideration. A parametric study of steady-state behavior has been carried out. Finally, the isothermal, thermohydrodynamic, and contact loads for a model bearing have been calculated, assuming the surface height distribution as Gaussian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.