Abstract

This paper examines the effects of monotonic and cyclic temperature changes of a model energy pile (diameter=25 mm, length=264 mm) on the variations in temperature and volumetric water content of surrounding unsaturated sand. Water flowed away from the pile during heating to 36°C and toward the pile during cooling to 5°C, causing soil drying and wetting near the pile, respectively. The change in volumetric water content was time-dependent, nonlinear, and slower than the change in soil temperature and continued to evolve after the soil temperature changes stabilized. Cyclic heating/cooling induced lower thermohydraulic changes in the soil than monotonic heating and cooling. The most significant changes in soil temperatures and volumetric water content were closest to the pile at a radial distance of 20 mm from the edge of the pile and reduced with increasing radial distance for all cases. The largest change in the degree of saturation was near the pile and was up to 6% for monotonic heating. Cyclic heating/cooling induced irreversible cyclic hydraulic responses near the pile with consecutive thermal cycles and caused a permanent reduction in the soil volumetric water content. However, these irreversible cyclic effects were dominant at a radius of 20 mm and reduced with increasing radial distance from the energy pile. The change in volumetric water content was time-dependent, indicating that the ratio of heating to cooling times during cyclic heating/cooling will have a significant effect on the reversibility of hydraulic responses under temperature cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.