Abstract

Thermogravimetry, differential thermal analysis, mass spectrometry, and X‐ray diffractometry were used to study the reaction process of the in situ reaction between Si3N4, B4C, and carbon for the synthesis of silicon carbide–boron nitride composites. Atmospheres with a low partial pressure of nitrogen (for example argon + 5%–10% nitrogen) seemed to inhibit denitrification and also maintain a high reaction rate. However, the reaction rate decreased significantly in a pure nitrogen atmosphere. The experimental mass spectrometry results also revealed that B4C in the Si3N4–B4C–C system inhibited the reaction between Si3N4 and carbon and, even, the decomposition of Si3N4. The present results indicate that boron could be a composition stabilizer for ceramic materials in the Si‐N‐C system used at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.