Abstract
The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Refractory Metals and Hard Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.