Abstract
The formation of MoS2 by thermal decomposition of ammonium tetrathiomolybdate (ATT) solids under an argon atmosphere has been studied by simultaneous thermogravimetric and differential thermal analysis. The sequential products for the decomposition upon heating to 700 °C is ATT (hydrated)→(NH4)2MoS4→(NH4)HMoS4→H2MoS4→MoS3→ Mo2S5→MoS2. MoS2 forms between 230 and 260 °C and remains stable up to about 360 °C when it tends to be oxidized by residual oxygen, if present in the atmosphere. These findings suggest that the synthesis of MoS2 from (NH4)2MoS4 via formation of MoS3 is not a direct process, as previously reported, but rather a complex process involving a number of intermediate products (NH4)HMoS4, H2MoS4 and Mo2S5 which have not been reported before. That these products are only specific to the very narrow temperature regimes as revealed suggests that they are very unstable and short lived, that their presence is transient in nature and thus that ex-situ characterization of them is normally difficult. The presence of these intermediate products, as justified experimentally, is further interpreted in terms of their mutual structural similarities which improve understanding as to why MoS2 can usually be prepared from ATT by thermal decomposition, as in this case, or by other techniques, such as anodizing. Laminar morphology of MoS2 is revealed by transmission electron microscopy and its crystal structure examined by selected-area diffraction. Further ex-situ examination by X-ray photoelectron spectroscopy of this end product supports the feasibility of preparing MoS2 from aqueous solutions by anodizing. © 1998 Kluwer Academic Publishers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.