Abstract

A significant problem of biofuel combustion is the emerging emissions of particulate matter. This paper deals with the experimental determination of the particulate matter emission characteristics of 27 different types of conventional and less traditional solid biofuels. Thermogravimetric analysis is used for the controlled heating of all tested samples from 25 °C to 650 °C with a 10 °C·min−1 heating rate. The analysis is performed for two atmosphere compositions, namely 21 % O2 and 0 % O2. The resulting flue gas is fed to an instrument allowing fine particles' detection ranging from 18 to 545 nm in diameter. The relation between the temperature of fuel samples and the number and mass of the generated particles is investigated. The percentage of the original sample mass converted to particles is determined. Subsequently, particulate matter emission is expressed as a relation to sample ash content and sample volatile matter content. The specific particulate matter emissions range of all tested samples are expressed per megajoule of higher heating value (HHV): 1.02–2.67·1015 #·MJ−1 and 694–2844 mg MJ−1 in the atmosphere with 21 % of O2 and 1.11–3.29·1015 #·MJ−1 and 898–6823 mg MJ−1 in the atmosphere without oxygen (pyrolysis).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.